Java简单实现滑动窗口

由于最近有一个统计单位时间内某key的访问次数的需求,譬如每5秒访问了redis的某key超过100次,就取出该key单独处理。

这样的单位时间统计,很明显我们都知道有个边界问题,譬如5秒内100次的限制。刚好前4.99秒访问都是0,最后0.01秒来了100次,5.01秒又来了100次。也就是访问有明显的毛刺情况出现,为了弱化这个毛刺情况,我们可以采用滑动窗口。

滑动窗口

滑动窗口的主要原理比较简单,就是将这个单位时间进行拆分,譬如5秒的统计范围,我们将它划分成5个1秒。

当请求进来时,先判断当前请求属于这5个1秒的时间片中的哪个,然后将对应的时间片对应的统计值加1,再判断当前加上前4个时间片的次数总和是否已经超过了设置的阈值。

当时间已经到达第6个时间片时,就把第一个时间片给干掉,因为无论第一片是多少个统计值,它都不会再参与后续的计算了。

就这样,随着时间的推移,统计值就随着各个时间片的滚动,不断地进行统计。

具体要将单位时间拆分为多少片,要根据实际情况来决定。当然,毫无疑问的是切分的越小,毛刺现象也越少。系统统计也越准确,随之就是内存占用会越大,因为你的这个窗口的数组会更大。

代码实现思路就是定义好分片数量,每个分片都有一个独立的计数器,所有的分片合计为一个数组。当请求来时,按照分片规则,判断请求应该划分到哪个分片中去。要判断是否超过阈值,就将前N个统计值相加,对比定义的阈值即可。

代码我直接引用别人写好的了,源代码在https://www.iteye.com/blog/go12345-1744728


import java.util.concurrent.atomic.AtomicInteger;

/**
 * 滑动窗口。该窗口同样的key,都是单线程计算。
 *
 * @author wuweifeng wrote on 2019-12-04.
 */
public class SlidingWindow {
    /**
     * 循环队列,就是装多个窗口用,该数量是windowSize的2倍
     */
    private AtomicInteger[] timeSlices;
    /**
     * 队列的总长度
     */
    private int timeSliceSize;
    /**
     * 每个时间片的时长,以毫秒为单位
     */
    private int timeMillisPerSlice;
    /**
     * 共有多少个时间片(即窗口长度)
     */
    private int windowSize;
    /**
     * 在一个完整窗口期内允许通过的最大阈值
     */
    private int threshold;
    /**
     * 该滑窗的起始创建时间,也就是第一个数据
     */
    private long beginTimestamp;
    /**
     * 最后一个数据的时间戳
     */
    private long lastAddTimestamp;

    public static void main(String[] args) {
        //1秒一个时间片,窗口共5个
        SlidingWindow window = new SlidingWindow(100, 4, 8);
        for (int i = 0; i < 100; i++) {
            System.out.println(window.addCount(2));

            window.print();
            System.out.println("--------------------------");
            try {
                Thread.sleep(102);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    public SlidingWindow(int duration, int threshold) {
        //超过10分钟的按10分钟
        if (duration > 600) {
            duration = 600;
        }
        //要求5秒内探测出来的,
        if (duration <= 5) {
            this.windowSize = 5;
            this.timeMillisPerSlice = duration * 200;
        } else {
            this.windowSize = 10;
            this.timeMillisPerSlice = duration * 100;
        }
        this.threshold = threshold;
        // 保证存储在至少两个window
        this.timeSliceSize = windowSize * 2;

        reset();
    }

    public SlidingWindow(int timeMillisPerSlice, int windowSize, int threshold) {
        this.timeMillisPerSlice = timeMillisPerSlice;
        this.windowSize = windowSize;
        this.threshold = threshold;
        // 保证存储在至少两个window
        this.timeSliceSize = windowSize * 2;

        reset();
    }

    /**
     * 初始化
     */
    private void reset() {
        beginTimestamp = SystemClock.now();
        //窗口个数
        AtomicInteger[] localTimeSlices = new AtomicInteger[timeSliceSize];
        for (int i = 0; i < timeSliceSize; i++) {
            localTimeSlices[i] = new AtomicInteger(0);
        }
        timeSlices = localTimeSlices;
    }

    private void print() {
        for (AtomicInteger integer : timeSlices) {
            System.out.print(integer + "-");
        }
    }

    /**
     * 计算当前所在的时间片的位置
     */
    private int locationIndex() {
        long now = SystemClock.now();
        //如果当前的key已经超出一整个时间片了,那么就直接初始化就行了,不用去计算了
        if (now - lastAddTimestamp > timeMillisPerSlice * windowSize) {
            reset();
        }

        return (int) (((now - beginTimestamp) / timeMillisPerSlice) % timeSliceSize);
    }

    /**
     * 增加count个数量
     */
    public boolean addCount(int count) {
        //当前自己所在的位置,是哪个小时间窗
        int index = locationIndex();
//        System.out.println("index:" + index);
        //然后清空自己前面windowSize到2*windowSize之间的数据格的数据
        //譬如1秒分4个窗口,那么数组共计8个窗口
        //当前index为5时,就清空6、7、8、1。然后把2、3、4、5的加起来就是该窗口内的总和
        clearFromIndex(index);

        int sum = 0;
        // 在当前时间片里继续+1
        sum += timeSlices[index].addAndGet(count);
        //加上前面几个时间片
        for (int i = 1; i < windowSize; i++) {
            sum += timeSlices[(index - i + timeSliceSize) % timeSliceSize].get();
        }
        System.out.println(sum + "---" + threshold);

        lastAddTimestamp = SystemClock.now();

        return sum >= threshold;
    }

    private void clearFromIndex(int index) {
        for (int i = 1; i <= windowSize; i++) {
            int j = index + i;
            if (j >= windowSize * 2) {
                j -= windowSize * 2;
            }
            timeSlices[j].set(0);
        }
    }

}
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;

/**
 * 用于解决高并发下System.currentTimeMillis卡顿
 * @author lry
 */
public class SystemClock {

    private final int period;

    private final AtomicLong now;

    private static class InstanceHolder {
        private static final SystemClock INSTANCE = new SystemClock(1);
    }

    private SystemClock(int period) {
        this.period = period;
        this.now = new AtomicLong(System.currentTimeMillis());
        scheduleClockUpdating();
    }

    private static SystemClock instance() {
        return InstanceHolder.INSTANCE;
    }

    private void scheduleClockUpdating() {
        ScheduledExecutorService scheduler = Executors.newSingleThreadScheduledExecutor(new ThreadFactory() {
            @Override
            public Thread newThread(Runnable runnable) {
                Thread thread = new Thread(runnable, "System Clock");
                thread.setDaemon(true);
                return thread;
            }
        });
        scheduler.scheduleAtFixedRate(() -> now.set(System.currentTimeMillis()), period, period, TimeUnit.MILLISECONDS);
    }

    private long currentTimeMillis() {
        return now.get();
    }

    /**
     * 用来替换原来的System.currentTimeMillis()
     */
    public static long now() {
        return instance().currentTimeMillis();
    }
}

 

参照代码main方法,通过修改每个时间片的时间,窗口数量,阈值,来进行测试。

这就是简单实现了。

 

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值